已知二次函数f(x)=ax2+bx+c,满足f(0)=f(1)=0,且f(x)的最小值是-.
(1)求f(x)的解析式;
(2)设直线l:y=t2-t(其中0<t<,t为常数),若直线l与f(x)的图象以及y轴所围成封闭图形的面积是S1(t),直线l与f(x)的图象所围成封闭图形的面积是S2(t),设g(t)=S1(t)+S2(t),当g(t)取最小值时,求t的值.
网友回答
解:(1)由二次函数图象的对称性,
可设f(x)=a(x-)2-,
又f(0)=0,∴a=1,故f(x)=x2-x.
(2)据题意,直线l与f(x)的图象的交点坐标为(t,t2-t),由定积分的几何意义知:
g(t)=S1(t)+S2(t)
=∫0t[(x2-x)-(t2-t)]dx+[(t2-t)-(x2-x)]dx
=[(-)-(t2-t)x]|0t+[(t2-t)x-(-)]
=-t3+t2-t+.
而g′(t)=-4t2+3t-=-(8t2-6t+1)=-(4t-1)(2t-1).
令g′(t)=0?t=或t=(不合题意,舍去).
当t∈(0,)时,g′(t)<0,g(t)递减;
当t∈(,)时,g′(t)>0,g(t)递增;
故当t=时,g(t)有最小值.
解析分析:(1)由“f(0)=f(1)=0”结合二次函数图象的对称性,设f(x)=a(x-)2-,再代点求解.(2)要建立g(t)的模型,由于是曲线所围成的图象,所以用定积分求解,设直线l与f(x)的图象的交点坐标为(t,t2-t),再由定积分的几何意义S1(t)=∫0t[(x2-x)-(t2-t)]dx,S2(t)=[(t2-t)-(x2-x)]dx,再求和建立g(t)模型求其最值.
点评:本题主要考查二次函数解析式和其图象的应用,这里涉及了曲线所围成的面积,要用定积分解决.