如图,在Rt△ABC中,∠ACB=90°,半径为1的圆A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P.已知tan∠BPD=,CE

发布时间:2020-07-30 04:37:32

如图,在Rt△ABC中,∠ACB=90°,半径为1的圆A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P.已知tan∠BPD=,CE=2,则△ABC的周长是________.

网友回答

12

解析分析:过点D作DQ⊥AC于Q,可用未知数表示出QE的长,根据∠BPD(即∠EDQ)的正切值即可求出DQ的长;在Rt△ADQ中,可用QE表示出AQ的长,由勾股定理即可求得EQ、DQ、AQ的长;易证得△ADQ∽△ABC,根据得到的比例线段可求出BD、BC的表达式,进而可根据三角形周长的计算方法得到周长与CE的关系式,从而解得三角形的周长.

解答:解:过D点作DQ⊥AC于点Q.则△DQE与△PCE相似,设AQ=a,则QE=1-a.∴且tan∠BPD=,∴DQ=2(1-a).∵在Rt△ADQ中,据勾股定理得:AD2=AQ2+DQ2即:12=a2+【2(1-a)】2,解之得a=1(不合题意,舍去),或a=.∵△ADQ与△ABC相似,∴====.∴AB=5AD=5,BC=5DQ=4,AC=5AQ=3,∴三角形ABC的周长是:AB+BC+AC=5+4+3=12;故
以上问题属网友观点,不代表本站立场,仅供参考!