在梯形ABCD中,AD平行于BC,M,N分别为BC、AD的中点,角A+角D=90°,求MN=1\2(

发布时间:2021-03-09 18:34:58

在梯形ABCD中,AD平行于BC,M,N分别为BC、AD的中点,角A+角D=90°,求MN=1\2(

网友回答

证明:过M作ME‖AB交AD于E,作MF‖CD交AD于F,则∠1=∠A,∠2=∠D,又∵BC‖AD,
∴四边形AEMB和MFDC都是平行四边形.
∴AE=BM,DF=CM.
又∠A+∠D=90°,
∴∠1+∠2=90°,故∠EMF=90°.
∵AN=ND,AE=BM=MC=DF,
∴EN=NF.
即MN为Rt△EMF的斜边上的中线.
∴AD-BC=2MN.
∴MN=1/2 EF
= 1/2(AD-AE-FD)
= 1/2(AD-BM-MC)
= 1/2(AD-BC).
======以下答案可供参考======
供参考答案1:
很简单的问题嘛
还是在不会???????????????????????????????????????????
以上问题属网友观点,不代表本站立场,仅供参考!