数列{an}是首项a1=4的等比数列,sn为其前n项和,且S3,S2,S4成等差数列.(I)求数列{an}的通项公式;(II)若bn=log2|an|,设Tn为数列{

发布时间:2020-07-31 19:01:04

数列{an}是首项a1=4的等比数列,sn为其前n项和,且S3,S2,S4成等差数列.
(I)求数列{an}的通项公式;
(II)若bn=log2|an|,设Tn为数列{}的前n项和,求证Tn<.

网友回答

解:(I)设等比数列{an}的公比为q.
当q=1时,S3=12,S2=8,S4=16,不成等差数列
∴q≠1,
2S2=S3+S4,
∴,
即q4+q3-2q2=0.∵q≠0,q≠1,∴q=-2,
∴an=4(-2)n-1=(-2)n+1
(Ⅱ)bn=log2|an|=log2|(-2)n+1|=n+1,

∴,

解析分析:(I)设等比数列{an}的公比为q,先看当q=1时,S3,S2,S4不成等差数列,不符合题意,判断出q≠1,进而根据等比数列求和公式表示出S3,S2,S4,根据等差中项的性质建立等式,求得q,则数列{an}的通项公式可得.(Ⅱ)把(1)中的an代入bn=,进而利用裂项法求得前n项的和,根据原式得证.

点评:本题主要考查了数列的求和.应熟练掌握常用的数列求和的方法,如公式法,错位相减法,裂项法等.
以上问题属网友观点,不代表本站立场,仅供参考!