已知S=12-22+32-42+…+20052-20062+20072,则S除以2005的余数是________.
网友回答
3
解析分析:由已知S=12-22+32-42+…+20052-20062+20072,可以得出S=-(22-12)-(42-32)-(62-52)-(82-72)-…-(20062-20052)+20072,?S=-(3+7+11+15+…+4011)+20072,不难发现3,7,11,15…4011,是公差为4的等差数列其中4011为1003项,即而求出S.
解答:S=-(22-12)-(42-32)-(62-52)-(82-72)-…-(20062-20052)+20072=-(3+7+11+15+…+4011)+20072=-(3+4011)×1003/2+20072=-2007×1003+20072=2007×1004.那么S/2005===+故:S除以2005的余数是3.
点评:此题考查了学生分析、归纳发现规律专题的解题能力,采用试求方法得出一等差数列,也是关键.