如图,在半径为5的⊙O中,点A、B在⊙O上,∠AOB=90°,点C是弧AB上的一个动点,AC与OB的延长线相交于点D,设AC=x,BD=y.
(1)求y关于x的函数解析式,并写出它的定义域;
(2)如果⊙O1与⊙O相交于点A、C,且⊙O1与⊙O的圆心距为2,当BD=OB时,求⊙O1的半径;
(3)是否存在点C,使得△DCB∽△DOC?如果存在,请证明;如果不存在,请简要说明理由.
网友回答
解:(1)过⊙O的圆心作OE⊥AC,垂足为E,
∴AE=,OE=.
∵∠DEO=∠AOB=90°,∴∠D=90°-∠EOD=∠AOE,∴△ODE∽△AOE.
∴,∵OD=y+5,∴.
∴y关于x的函数解析式为:.
定义域为:.(2)当BD=OB时,,.
∴x=6.
∴AE=,OE=.
当点O1在线段OE上时,O1E=OE-OO1=2,.
当点O1在线段EO的延长线上时,O1E=OE+OO1=6,.
⊙O1的半径为或.
(3)存在,当点C为的中点时,△DCB∽△DOC.
证明如下:∵当点C为的中点时,∠BOC=∠AOC=∠AOB=45°,
又∵OA=OC=OB,∴∠OCA=∠OCB=,
∴∠DCB=180°-∠OCA-∠OCB=45°.
∴∠DCB=∠BOC.又∵∠D=∠D,∴△DCB∽△DOC.
∴存在点C,使得△DCB∽△DOC.
解析分析:(1)过⊙O的圆心作OE⊥AC,垂足为E.通过证明△ODE∽△AOE求得,然后将相关线段的长度代入求得y关于x的函数解析式,再由函数的性质求其定义域;
(2)当BD=OB时,根据(1)的函数关系式求得y=,x=6.分两种情况来解答O1A的值①当点O1在线段OE上时,O1E=OE-OO1=2;②当点O1在线段EO的延长线上时,O1E=OE+OO1=6;
(3)当点C为AB的中点时,∠BOC=∠AOC=∠AOB=45°,∠OCA=∠OCB=,然后由三角形的内角和定理求得
∠DCB=45°,由等量代换求得∠DCB=∠BOC.根据相似三角形的判定定理AA证明△DCB∽△DOC.
点评:本题主要考查了圆与圆的位置关系、勾股定理.此题很复杂,解答此题的关键是作出辅助线OE⊥AC,利用相似三角形的判定定理及性质解答,解答(2)时注意分两种情况讨论,不要漏解.