已知函数y=2sin(ωx+φ)满足f(-x)=f(x),其图象与直线y=2的某两个交点横坐标为x1,x2,|x1-x2|的最小值为π,则A.,B.ω=2,C.,D.

发布时间:2020-07-31 16:57:22

已知函数y=2sin(ωx+φ)满足f(-x)=f(x),其图象与直线y=2的某两个交点横坐标为x1,x2,|x1-x2|的最小值为π,则A.,B.ω=2,C.,D.ω=2,

网友回答

D

解析分析:由y=2sin(ωx+φ)是偶函数,结合所给的选项可得 φ=.再由函数的周期为π,即 =π,求得ω=2,从而得出结论.

解答:∵函数y=2sin(ωx+φ)满足f(-x)=f(x),∴函数y=2sin(ωx+φ)是偶函数,结合所给的选项可得 φ=.再由其图象与直线y=2的某两个交点横坐标为x1,x2,|x1-x2|的最小值为π,可得函数的周期为π,即 =π,故ω=2,故选D.

点评:本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!