解答题已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)的部分图象如下图所示.
(1)求函数f(x)的解析式;
(2)求函数y=f(-x)的单调区间及在x∈[-2,2]上最值,并求出相应的x的值.
网友回答
解:(1)由图象知A=2,T=8,,ω=,又图象经过点(1,2)∴,,即∵
.…(7分)
(2)
由,得8k-1≤x≤8k+3,k∈Z,故y=f(-x)在[8k-1,8k+3],k∈Z上是减函数;
同理函数在[8k+3,8k+7],k∈Z上是增函数.
∵x∈[-2,2],由上可知当x=-1时,y=f(-x)取最大值2;
当x=2时,y=f(-x)取最小值.…(14分)解析分析:(1)由图形可以求出A,T,根据周期解出ω,根据图象过(1,2),把这个点的坐标代入以及φ的范围求出φ,可得函数解析式.(2)利用(1)求出函数y的解析式,通过角的范围x∈[-2,2],确定函数的最大值以及相应的x 的值.点评:题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查分析问题解决问题的能力,解题的关键是初相的求法要注意,本题是基础题.