①若a>b>0,c>d>0,则;?②若c>a>b>0,则
③若a>b,则lg(a-b)>0;?④若a>b,则3(a-b)≥2(a-b)
其中正确的个数是A.1个B.2个C.3个D.4个
网友回答
C
解析分析:①由不等式的可乘性可证;②若c>a>b>0则0<c-a<c-b,所以>0,由不等式的可乘性可得结果;③只有a-b>1才有lg(a-b)>0,故不正确;④若a>b则a-b>0必有3(a-b)≥2(a-b),故正确.
解答:由不等式的性质若a>b>0,c>d>0则ac>bd>0,则有故①正确;若c>a>b>0则0<c-a<c-b,所以>0,由不等式的可乘性故②正确;若a>b则a-b>0,只有a-b>1才有lg(a-b)>0,故③不正确;若a>b则a-b>0必有3(a-b)≥2(a-b),故④正确.故选C.
点评:本题为不等式的判定,用好不等式的性质是解决问题的关键,属基础题.