有关数列的题已知数列{an}满足:a1=1/2,且a(n)-a(n-1)=1/2^n.1求a2,a3

发布时间:2021-03-16 11:26:13

有关数列的题已知数列{an}满足:a1=1/2,且a(n)-a(n-1)=1/2^n.1求a2,a3,a4;2求数列{an}的通项an.

网友回答

1、a(2)=3/4,a(3)=7/8,a(4)=15/16
2、a(n)=1-1/2^n
详细过程:可以根据前几项找规律,然后用数学归纳法证明,也可以用叠加法.
a(n)-a(n-1)=1/2^n
a(n-1)-a(n-2)=1/2^(n-1)
.a(3)-a(2)=1/2^3
a(2)-a(1)=1/2^2
其中a(1)=1/2,
上式叠加,得
a(n)-a(1)=1/4+1/8+1/16+...+1/2^n=1/2-1/2^n
a(n)=1-1/2^n
======以下答案可供参考======
供参考答案1:
1, a1=1/2带入a(n)-a(n-1)=1/2^n得a2=3/4 同理递推带入的a3=7/8,a4=15/16.
2, a(n)=a(n)-a(n-1)+a(n-1)-a(n-2)+a(n-2)-a(n-3)+......+a(2)-a(1)+a(1)=1/2^n+1/2^(n-1)+.....1/4+1/2
=1/2*[1-1/2^(n+1)]/(1-1/2)=1-1/2^(n+1)
供参考答案2:
1.a2=a1+(1/2)^2=3/4
a3=a2+(1/2)^3=7/8
a4=a3+(1/2)^4=15/16
2.a1=1/2
a2-a1=(1/2)^2
a3-a2=(1/2)^3
...an-a(n-1)=(1/2)^n
将以上相加:
an=(1/2)+(1/2)^2+(1/2)^3+...+(1/2)^n
=(1/2)[1-(1/2)^n]/[1-(1/2)]
=1-(1/2)^n
供参考答案3:
a2-a1=1/4
a2-1/2=1/4
a2=3/4a3-a2=1/8a3-3/4=1/8a3=7/8a4-a3=1/16a4-7/8=1/16a4=15/16a(n)-a(n-1)=1/2^n
a(n-1)-a(n-2)=1/2^(n-1)a(n-2)-a(n-3)=1/2^(n-2)..........a4-a3=15/16a3-a2=7/8a2-a1=3/4以上等 式相加得an-a1=1/2+1/4+...+1/2^nan-a1=1/2*[1-1/2^n]/(1-1/2)an-a1=1-1/2^nan-1/2=1-1/2^nan=3/2-1/2^n供参考答案4:(1)由a(n)-a(n-1)=1/2^n得:a2-a1=1/4
,a1=1/2,所以:a2=3/4,同理a3-a2=1/8,a4-a3=1/16,所以:a3=7/8,a4=15/16(2)a2-a1=1/4 a3-a2=1/8 a4-a3=1/16 a5-a4=1/32 ...... a(n)-a(n-1)=1/2^n上边的式子相加得:a(n)-a1=1/4+1/8+1/16+1/32+...+1/2^n,a1=1/2所以:a(n)=1/2+1/4+1/8+...+1/2^n后边的式子是一个等比数列而已:所以:a(n)=1-1/2^n
以上问题属网友观点,不代表本站立场,仅供参考!