已知数列{an}的前n项和Sn=2an-1,等差数列{bn}满足b1=a1,b4=S3.(1)求数列

发布时间:2021-03-16 11:25:35

已知数列{an}的前n项和Sn=2an-1,等差数列{bn}满足b1=a1,b4=S3.(1)求数列{an},{bn}的通项公式.(2)设cn=1÷bnbn+1,数列{cn}的前n项和为Tn,问Tn>1001÷2012的最小正整数n是多少?

网友回答

Sn=2an-1,
Sn-1=2(an-1)-1
两式相减,an=2(an-1)
a1=2a1-1,b1=a1=1
an=2^(n-1),b4=S3=7
因为bn等差,所以bn=2n-1
Cn=1/(bnbn+1)=1/(2n-1)*1/(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
Tn=1/2[1/1-1/3+1/3-…+1/(2n-1)-1/(2n+1)]=1/2[1-1/(2n+1)]=n/(2n+1)>1001/2012
n的最小值为101
======以下答案可供参考======
供参考答案1:
an=2^n bn=2n-1
供参考答案2:
已知数列{an}的前n项和Sn=2an-1,等差数列{bn}满足b1=a1,b4=S3.(1)求数列{an},{bn}的通项公式.(2)设cn=1÷bnbn+1,数列{cn}的前n项和为Tn,问Tn>1001÷2012的最小正整数n是多少?(图1)
以上问题属网友观点,不代表本站立场,仅供参考!