△ABC中,AC=5,中线AD=7,则AB边的取值范围是A.1<AB<29B.4<AB<24C.5<AB<19D.9<AB<19
网友回答
D
解析分析:延长AD至E,使DE=AD,连接CE,使得△ABD≌△ECD,则将AB和已知线段转化到一个三角形中,进而利用三角形的三边关系确定AB的范围即可.
解答:解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,BD=CD,∠ADB=∠EDC,AD=ED,∴△ABD≌△ECD(SAS).∴AB=CE.在△ACE中,根据三角形的三边关系,得AE-AC<CE<AE+AC,即9<CE<19.则9<AB<19.故选D.
点评:解决此题的关键是通过倍长中线,构造全等三角形,把要求的线段和已知的线段放到一个三角形中,再根据三角形的三边关系进行计算.