我们知道,三角形一个外角等于两个不相邻的内角和.请利用这条定理解决下列问题:如图,∠1=∠2=∠3.
(1)试说明∠BAC=∠DEF.
(2)∠BAC=70°,∠DFE=50°,求∠ABC的度数.
网友回答
(1)证明:在△ACE中,∠DEF=∠3+∠CAE,
∵∠1=∠3,
∴∠DEF=∠1+∠CAE=∠BAC,
即∠BAC=∠DEF;
(2)解:在△BCF中,∠DFE=∠2+∠BCF,
∵∠2=∠3,
∴∠DFE=∠3+∠BCF,
即∠DFE=∠ACB,
∵∠BAC=70°,∠DFE=50°,
∴在△ABC中,∠ABC=180°-∠BAC-∠ACB=180°-70°-50°=60°.
解析分析:(1)根据三角形的一个外角等于与它不相邻的两个内角的和用∠3和∠CAE表示出∠DEF,再根据∠1=∠3整理即可得证;
(2)根据三角形的一个外角等于与它不相邻的两个内角的和用∠2和∠BCF表示出∠DFE,再根据∠2=∠3整理可得∠ACB=∠DFE,然后利用三角形的内角和等于180°求解即可.
点评:本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质,并准确识图,找出图中各角度之间的关系是解题的关键.