我们新定义一种三角形:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.(1)根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命

发布时间:2020-07-30 00:37:42

我们新定义一种三角形:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
(1)根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命题,并说明理由;
(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆弧ADB的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.试说明△ACE是奇异三角形.

网友回答

解:(1)命题“等边三角形一定是奇异三角形”是真命题,
理由是:∵设等边三角形的一边为a,
则a2+a2=2a2,
∴符合“奇异三角形”的定义得出:命题“等边三角形一定是奇异三角形”是真命题;

(2)∵∠C=90°,
∴a2+b2=c2①,
∵Rt△ABC是奇异三角形,且b>a,
∴a2+c2=2b2②,
由①②得:b=a,c=a,
∴a:b:c=1::;

(3)∵①AB是⊙O的直径,
∴∠ACB=∠ADB=90°,
在Rt△ACB中,AC2+BC2=AB2,
在Rt△ADB中,AD2+BD2=AB2,
∵点D是半圆弧ADB的中点,
∴弧AD=弧DB,
∴AD=BD,
∴AB2=AD2+BD2=2AD2,
∴AC2+CB2=2AD2,
又∵CB=CE,AE=AD,
∴AC2+CE2=2AE2,
∴△ACE是奇异三角形.
解析分析:(1)设等边三角形ABC饿边长是a,则a2+a2=2a2,根据“奇异三角形”的定义推出即可;(2)根据勾股定理得出a2+b2=c2①,根据奇异三角形得出a2+c2=2b2②,由①②求出b=a,c=a,代入即可求出
以上问题属网友观点,不代表本站立场,仅供参考!