如图,∠AOB=30°,OC平分∠AOB,P为OC上一点,PD∥OA交OB于点D,PE⊥OA于E,OD=4cm,则PE=________.
网友回答
2cm
解析分析:过P作PF⊥OB于F,根据角平分线的定义可得∠AOC=∠BOC=15°,根据平行线的性质可得∠DPO=∠AOP,从而可得PD=OD,再根据30度所对的边是斜边的一半可求得PF的长,最后根据角平分线的性质即可求得PE的长.
解答:解:过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,∵PD∥OA,∴∠DPO=∠AOP=15°,∴PD=OD=4cm,∵∠AOB=30°,PD∥OA,∴∠BDP=30°,∴在Rt△PDF中,PF=PD=2cm,∵OC为角平分线,PE⊥OA,PF⊥OB,∴PE=PF,∴PE=PF=2cm.故