如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;

发布时间:2020-07-30 04:27:44

如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).
(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;
(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;
(3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.

网友回答

解:(1),
当y=0时,x=2,
∴E(2,0),
由已知可得:AD=AB=BC=DC=4,AB∥DC,
∴四边形AECD是梯形,
∴四边形AECD的面积S=×(2-1+4)×4=10,
答:四边形AECD的面积是10.

(2)在DC上取一点G,使CG=AE=1,
则St梯形AEGD=S梯形EBCG,
∴G点的坐标为(4,4),
设直线l的解析式是y=kx+b,代入得:

解得:,
即:y=2x-4,
答:直线l的解析式是y=2x-4.

(3)∵直线l1经过点F()且与直线y=3x平行,
设直线11的解析式是y1=kx+b,
则:k=3,
代入得:0=3×(-)+b,
解得:b=,
∴y1=3x+
已知将(2)中直线l沿着y轴向上平移1个单位,则所得的直线的解析式是y=2x-4+1,
即:y=2x-3,
当y=0时,x=,
∴M(,0),
解方程组得:,
即:N(-,-18),
S△NMF=×[-(-)]×|-18|=27.
答:△NMF的面积是27.

解析分析:(1)先求出E点的坐标,根据梯形的面积公式即可求出四边形AECD的面积;(2)根据已知求出直线1上点G的坐标,设直线l的解析式是y=kx+b,把E、G的坐标代入即可求出解析式;(3)根据直线l1经过点F()且与直线y=3x平行,知k=3,把F的坐标代入即可求出b的值即可得出直线11,同理求出解析式y=2x-3,进一步求出M、N的坐标,利用三角形的面积公式即可求出△MNF的面积.

点评:本题主要考查了一次函数的特点,待定系数法求一次函数的解析式,一次函数图象上点的特征,平移的性质等知识点,解此题的关键是能综合运用上面的知识求一次函数的解析式.
以上问题属网友观点,不代表本站立场,仅供参考!