如果函数的图象在x=1处的切线l过点(),并且l与圆C:x2+y2=1相离,则点(a,b)与圆C的位置关系是A.在圆内B.在圆外C.在圆上D.不能确定

发布时间:2020-07-31 19:06:27

如果函数的图象在x=1处的切线l过点(),并且l与圆C:x2+y2=1相离,则点(a,b)与圆C的位置关系是A.在圆内B.在圆外C.在圆上D.不能确定

网友回答

A
解析分析:利用求导法则求出函数f(x)的导函数,根据题意将x=1代入导函数中,求出切线l的斜率,由斜率及切线l过(0,-),表示出切线l的方程,根据切线l与圆相离,可得出圆心到切线l的距离d大于圆的半径,利用点到直线的距离公式列出关系式,变形后得到a2+b2小于1,即(a,b)到圆心(0,0)的距离小于半径r,可判断出此点在圆内.

解答:求导得:f′(x)=-?,由题意得:f(x)函数图象在x=1处的切线l过点(0,-),∴切线l的斜率为f′(1)=-,∴切线l方程为y+=-x,即ax+by+1=0,∵直线l与圆C:x2+y2=1相离,且圆心坐标为(0,0),半径r=1,∴圆心到直线l的距离d=>1=r,即a2+b2<1,∴点(a,b)与圆C的位置关系是:点在圆内.故选A

点评:此题考查了直线与圆的位置关系,涉及的知识有:利用导数研究曲线上某点的切线方程,点到直线的距离公式,点与圆的位置关系,以及两点间的距离公式,其中直线与圆的位置关系可以由d与r的大小来判断(d表示圆心到直线的距离,r表示圆的半径),当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交.
以上问题属网友观点,不代表本站立场,仅供参考!