如图,已知⊙O中,直径AB=1,弦AC与BD相交于点P,则cos∠BPC的值等于线段A.BC的长B.AD的长C.CD的长D.BP的长
网友回答
C
解析分析:根据直径所对的圆周角是直角得∠ACB=90°;根据三角函数定义知cos∠BPC=PC:PB;易证△PCD∽△PBA,得PC:PB=CD:AB.
解答:∵AB是直径,∴∠ACB=90°.∴cos∠BPC=PC:PB.∵∠ACD=∠ABD,∠CPD=∠BPA,∴△PCD∽△PBA.∴PC:PB=CD:AB=CD:1=CD.故选C.
点评:此题考查圆周角定理、三角函数定义、相似三角形的判定和性质,难度中等.