解答题数列{an}中,a1=2,an+1=an+cn(c是常数,n=1,2,3,…),

发布时间:2020-07-09 01:26:16

解答题数列{an}中,a1=2,an+1=an+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.
(I)求c的值;
(II)求{an}的通项公式.
(III)由数列{an}中的第1、3、9、27、…项构成一个新的数列{bn},求的值.

网友回答

解:(I)a1=2,a2=2+c,a3=2+3c,因为a1,a2,a3成等比数列,
所以(2+c)2=2(2+3c),解得c=0或c=2.
当c=0时,a1=a2=a3,不符合题意舍去,故c=2.
(II)当n≥2时,由于a2-a1=c,a3-a2=2c,…an-an-1=(n-1)c,
所以.
又a1=2,c=2,故an=2+n(n-1)=n2-n+2(n=2,3,).
当n=1时,上式也成立,所以an=n2-n+2(n=1,2,)
(III)bn=32n-2-3n-1+2,
∴=9.解析分析:(I)利用题设递推式分别表示出a2和a3,利用三者的等比关系求得c.(II)分别表示很出a2-a1,a3-a2等,利用叠加法求得数列的通项公式.(III)把利用(II)中数列{an}的通项公式,求得bn},代入到求得
以上问题属网友观点,不代表本站立场,仅供参考!