如图,在Rt△ABC中,AB=AC,P是边AB(含端点)上的动点.过P作BC的垂线PR,R为垂足,∠PRB的平分线与AB相交于点S,在线段RS上存在一点T,若以线段PT为一边作正方形PTEF,其顶点E,F恰好分别在边BC,AC上.
(1)请判断BS与PS的长度之间的关系;
(2)请你探索线段TS与PA的长度之间的关系,并证明;
(3)设AB=1,当P在边AB(含端点)上运动时,请你探索正方形PTEF的面积的最小值.
网友回答
解:(1)BS=BS;理由如下:
∵在Rt△ABC中,AB=AC(已知),
∴∠B=∠C=45°(三角形内角和定理);
又∵PR⊥BC(已知),
∴∠SPR=45°(三角形内角和定理),
∴∠B=∠BPR(等量代换),
∴BR=PR(等角对等边);
∵RS是∠PRB的平分线(已知),
∴RS是PB的中垂线(等腰三角形的性质),
∴BS=BS;
(2)PA=TS;证明如下:
由(1)知,RS⊥平板,
∴∠STP+∠SPT=90°(直角三角形的两个锐角互余);
又∵四边形PTEF是正方形,
∴∠FPT=90°(正方形的四个内角都是直角),
∴∠APF+∠SPT=90°(平角的定义),
∴∠APF=∠STP(等量代换);
∴在Rt△FPA和Rt△PTS中,
,
∴Rt△FPA≌Rt△PTS,
∴PA=TS;(全等三角形的对应边相等);
(3)∵由(1)知,RS是等腰Rt△PRB的底边PB上的高,
∴PS=BS,
∴BS+PS+PA=1,
∴PS=.
设PA的长为x,正方形PTEF的面积为y,易知AF=PS,
则y=PF2=PA2+PS2,得y=x2+,
即y=x2-x+,
根据二次函数的性质,当x=时,y有最小值为.
如图2,当点P运动使得T与R重合时,PA=TS为最大.
易证等腰Rt△PAF≌等腰Rt△PSR≌等腰Rt△BSR,
∴PA=.
如图3,当P与A重合时,得x=0.
∴x的取值范围是0≤x≤.
∴①当x的值由0增大到时,y的值由减小到;
②当x的值由增大到时,y的值由增大到.
∵≤≤,
∴在点P的运动过程中,正方形PTEF面积y的最小值是.
解析分析:(1)由等腰直角三角形ABC的两个底角相等知∠B=∠C=45°;然后由垂直的定义、三角形内角和推知∠BPR=45°,所以根据等角对等边可以证明△BRP是等腰三角形,由等腰三角形的“三合一”的性质可以证得RS是PB的垂直平分线;(2)根据全等直角三角形的判定定理AAS证得△FPA≌△PTS;然后由全等三角形的对应边相等即可推知TS=PA;(3)要求正方形FPTE的面积,那么就要求出它的边长.RS是等腰直角△PRS的高,那么BS=PS,PS=,由(2)证得的全等三角形中我们可得出PS=AF,如果设PA=x,正方形PTEF的面积为y,我们就能用x表示出AF的值,直角三角形APF中,我们就能用x表示出PF2,也就得出了y与x的函数关系式,然后确定x的取值范围,x最小时x=PA=0此时P与A重合,S与T重合,E与R重合.x最大时,T与R重合,此时TS=BS=SP=PA,因此PA=,那么x的范围就是0≤x≤,然后根据函数的性质和自变量的范围求出y的最小值.
点评:本题综合考查了正方形的性质、等腰三角形的判定与性质以及全等三角形的判定与性质.解答(3)题时,注意求出二次函数后,要先讨论出x的取值范围,然后再根据自变量的范围求y的值.