(1)请阅读材料并填空:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1.求∠BPC的度数和等边三角形ABC的边长.李明同学的思路是:将△BP

发布时间:2020-08-04 14:26:23

(1)请阅读材料并填空:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1.求∠BPC的度数和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′.
根据李明同学的思路,进一步思考后可求得∠BPC=________°,等边△ABC的边长为________.
(2)请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC的度数和正方形ABCD的边长.

网友回答

(1)解:∵等边△ABC,
∴∠ABC=60°,
将△BPC绕点B顺时针旋转60°得出△ABP′,
∴AP′=CP=1,BP′=BP=,∠PBC=∠P′BA,∠AP′B=∠BPC,
∵∠PBC+∠ABP=∠ABC=60°,
∴∠ABP′+∠ABP=∠ABC=60°,
∴△BPP′是等边三角形,
∴PP′=,∠BP′P=60°,
∵AP′=1,AP=2,
∴AP′2+PP′2=AP2,
∴∠AP′P=90°,
∴∠BPC=∠AP′B=90°+60°=150°,
过点B作BM⊥AP′,交AP′的延长线于点M,
∴∠MP′B=30°,BM=,
由勾股定理得:P′M=,
∴AM=1+=,
由勾股定理得:AB==,
以上问题属网友观点,不代表本站立场,仅供参考!