如图,已知△ABC中,∠BAC=90°,AB=AC.D为线段AC上任一点,连接BD,过C点作CE∥AB且AD=CE,试说明BD和AE之间的关系,并证明.

发布时间:2020-08-04 18:35:45

如图,已知△ABC中,∠BAC=90°,AB=AC.D为线段AC上任一点,连接BD,过C点作CE∥AB且AD=CE,试说明BD和AE之间的关系,并证明.

网友回答

解:BD=AE,AE⊥BD;
证明:∵AB∥CE,∠BAC=90°,
∴∠ACE=90°,
在△ABD和△CAE中,

∴△ABD≌△CAE(SAS),
∴BD=AE.
∴:∠ABD+∠EAB=∠ACE+∠EAB=90°
∴AE⊥BD
∴BD=AE,AE⊥BD;

解析分析:先证∠ABD=∠CAE,再证△ABD≌△CAE即可得出
以上问题属网友观点,不代表本站立场,仅供参考!