如图,在梯形ABCD中,AD∥BC,∠B=90°,点E为AB上一点,且AD=AE,CD=CE,点F在CE上,且∠ADC=∠CFD.
(1)若CE平分∠BCD,求证:CE=2BE;
(2)求证:∠DCE=90°-2∠CDF.
网友回答
证明:(1)连接AC,
∵在△CDA和△CEA中,
,
∴△CDA≌△CEA(SSS),
∴∠DAC=∠EAC,∠DCA=∠ECA,
∴∠ECA=∠DCE,
∵AD∥BC,∠B=90°,
∴∠DAB=90°,∠DAC=∠ACB,
∵∠DAC=∠EAC,
∴∠BAC=∠ACB=45°,
∵CE平分∠DCB,
∴∠DCE=∠BCE,
∴∠ECA=∠DCE=∠EBC,
∴∠BCE=30°,
∵∠B=90°,
∴CE=2BE.
(2)由(1)得:△CDA≌△CEA,
∴∠ADC=∠AEC,
∵∠ADC=∠CFD,
∴∠AEC=∠CFD,
∴AE∥DF,
由(1)得:∠DAB=90°,
∴∠ADF=90°,
∵∠DCE+∠CFD+∠CDF=180°,
∴∠DCE=180°-∠CDF-∠CFD=180°-∠CDF-∠AEC=180°-∠CDF-∠ADC,
又∵∠ADC=90°+∠CDF,
∴∠DCE=180°-∠CDF-90°-∠CDF,
∴∠DCE=90°-2∠CDF.
解析分析:(1)连接AC,证△CDA≌△CEA,推出∠DAC=∠EAC,∠DCA=∠ECA,求出∠ECA=∠DCE,求出∠BAC=∠ACB=45°和∠ECA=∠DCE=∠EBC,求出∠BCE=30°即可;(2)求出∠ADC=∠AEC=∠CFD,推出AE∥DF,求出∠ADF=90°,求出∠DCE+∠CFD+∠CDF=180°,∠DCE=180°-∠CDF-∠ADC,∠ADC=90°+∠CDF,代入求出即可.
点评:本题考查了全等三角形的性质和判定,直角梯形,平行线的性质和判定,三角形的内角和定理,含30度角的直角三角形性质等知识点的综合运用,题目综合性比较强,有一定的难度.