解答题如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA

发布时间:2020-07-09 10:15:35

解答题如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2,BC=6.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角P-BD-D的大小.

网友回答

证明:(Ⅰ)∵PA⊥平面ABCD,BD?平面ABCD.∴BD⊥PA.
又,.∴∠ABD=30°,∠BAC=60°,∴∠AEB=90°,即BD⊥AC.
又PA∩AC=A.∴BD⊥平面PAC.
(Ⅱ)过E作EF⊥PC,垂足为F,连接DF.
∵DE⊥平面PAC,EF是DF在平面PAC上的射影,由三垂线定理知PC⊥DF,∴∠EFD为二面角A-PC-D的平面角.
又∠DAC=90°-∠BAC=30°,
∴DE=ADsinDAC=1,,
又,∴,PC=8.
由Rt△EFC∽Rt△PAC得.
在Rt△EFD中,,∴.
∴二面角A-PC-D的大小为.解析分析:(Ⅰ)要证BD⊥平面PAC,只需证明BD垂直平面PAC内的两条相交直线PA,AC即可.(Ⅱ)过E作EF⊥PC,垂足为F,连接DF,说明∠EFD为二面角A-PC-D的平面角,推出Rt△EFC∽Rt△PAC,通过解Rt△EFD,求二面角P-BD-D的大小.点评:本题考查平面与平面垂直的判定,二面角及其度量,考查逻辑思维能力,空间想象能力,计算能力,是中档题.
以上问题属网友观点,不代表本站立场,仅供参考!