如图点P是矩形ABCD的边AD上的任一点,AB=8,BC=15,则点P到矩形的两条对角线AC和BD的距离之和是________.
网友回答
解析分析:由矩形ABCD可得:S△AOD=S矩形ABCD,又由AB=8,BC=15,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=OA?PE+OD?PF,代入数值即可求得结果.
解答:解:过点P作PE⊥AC于E,PF⊥BD与F,连接OP,∵四边形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∠ABC=90°,S△AOD=S矩形ABCD,∴OA=OD=AC,∵AB=8,BC=15,∴AC===17,S△AOD=S矩形ABCD=30,∴OA=OD=,∴S△AOD=S△APO+S△DPO=OA?PE+OD?PF=OA?(PE+PF)=×(PE+PF)=30,∴PE+PF=.∴点P到矩形的两条对角线AC和BD的距离之和是.故