如图,△ABC中,O是BC的中点,D是∠BAC平分线上的一点,且DO⊥BC,过点D分别作DM⊥AB于M,DN⊥AC于N.
求证:BM=CN.
网友回答
证明:连接BD,CD,如图,
∵O是BC的中点,DO⊥BC,
∴OD是BC的垂直平分线,
∴BD=CD,
∵AD是∠BAC的平分线,DM⊥AB,DN⊥AC,
∴DM=DN,
在Rt△BMD和Rt△CND中,
,
∴Rt△BMD≌Rt△CND,
∴BM=CN.
解析分析:根据O是BC的中点,DO⊥BC,可知OD是BC的垂直平分线,那么BD=CD,而AD是∠BAC的平分线,DM⊥AB,DN⊥AC,根据角平分线的性质可得DM=DN,再根据HL可判定Rt△BMD≌Rt△CND,从而有BM=CN.
点评:本题考查了全等三角形的判定和性质、线段垂直平分线的性质,解题的关键是掌握垂直平分线的定义以及性质,掌握角平分线的性质以及具体的应用.