平行线分线段成比例定理对应线段怎么理解,十个具有相当难度的八年级奥数题【关于平行线等分线段定理,其实

发布时间:2020-07-11 08:57:55

平行线分线段成比例定理对应线段怎么理解,十个具有相当难度的八年级奥数题【关于平行线等分线段定理,其实

网友回答

设三条平行线与直线 m 交于 A、B、C 三点,与直线 n 交于 D、E、F 三点。
  连结AE、BD、BF、CE
  根据平行线的性质可得 S△ABE=S△DBE, S△BCE=S△BEF,
  ∴S△ABE/S△CBE=S△DBE/S△BFE
  根据同底等高三角形面积比等于底的比可得:AB/BC=DE/EF。
  由更比性质、等比性质得:AB/DE=BC/EF=(AB+BC)/(DE+EF)=AC/DF。
  扩展资料
  两直线a、b被三条平行线所截如图所示,如果相邻平行线的距离不相等,则AB≠BC, 不妨设AB:BC=m:n,将AB进行m等分,将线段BC进行n等分如图  
  P1,P2,……Pm-1是AB的m等分点,
  Q1,Q2,……Qn-1是BC的n等分点,
  由于AB:BC=m:n,
  则AP1=P1P2=……Pm-1B=BQ1=Q1Q2=……Qn-1C,
  过P1,P2,……Pm-1,Q1,Q2,……Qn-1分别作这组平行线的平行线,交b于P’1,P’2,……P’m-1,Q’1,Q’2,……Q’n-1,
  根据平行线等分线段定理,如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
  则DP’1=P’1P’2=……P’m-1E=E’Q1=Q’1Q’2=……Q’n-1F,
  则DE=m DP’1,EF=n E’Q1,
  则DE:EF= m:n.
  所以AB:BC=DE:EF
  于是结论得证。
  参考资料来源:百度百科-平行线分线段成比例定理

网友回答

楼上匿名的兄弟说得很有道理,不过作为一个奥数的老兵,偶还是忍不住手痒做了一下,嘿嘿。楼主小兄弟要好好加油啊!只是想不到现在奥数还那么热啊……以下主要用到平行四边形的基本性质和角平分线定理(若AD平分角BAC,交BC于D,则AB/AC=BD/BC。证明也是用中位线的。)
  I 过D作AC的平行线,过C作AD的平行线,二者相交于G,延长EF交DG于H。则ACGD是平行四边形,从而对角线AG与CD互相平分,于是A、F、G三点共线且EF是三角形ABG的中位线。这样,EF平行于BG,角DMH=角DBG,角DHM=角DGB。但是DG=AC=BD,所以三角形DBG是等腰三角形,于是角DBG=角DGB,得到角DMH=角DHM。又因为DG平行于AC,角DHM=角ONM,而角DMH与角OMN是对顶角,从而角ONM=角OMN,得到OM=ON。
  II 由中位线性质可知,EPFQ是平行四边形,从而EF平分PQ。设EF交PQ于O,则ON是三角形QPC的中位线,于是ON平行于CP且ON=1/2(CP)。另外,FM是三角形BPC的中位线,于是FM平行于CP且FM=1/2(CP)。这样,FMON是平行四边形,对角线互相平分,于是FO平分MN,也即EF平分MN。
  III 将三角形DEH旋转180度,使得D与A重合。设C、H、F分别变成I,J,K。则角IKE=角CFE,从而IK平行于BF。但是BF=FC=IK,于是BF与IK平行且相等,即:BFKI是平行四边形,于是BI平行于JG。于是角AIB=角AJG,角ABI=角AGJ。此时由于AI=CD=AB,角AIB=角ABI,于是角AJG=角AGJ。但是角AJG=角DHE,于是角DHE=角AGJ,也即角BGF=角CHF。
  IV 由EH=HN知NF=DE=1/2(BC),于是CF=NF-NC=1/2(BC)-(BC-BN)=BN-1/2(BC)=1/2(BM)-1/2(BC)=1/2(BM-BC)=1/2(CM)。从而CF=FM=1/2(CM)。
  VI 作B的角平分线,交AC于F。则AB/BC=AF/FC。此时角FBC=角C,于是BFC是等腰三角形。由于E是BC中点,FE垂直于BC,从而FE平行于AD。则AB/BC=AF/FC=DE/EC=DE/(1/2(BC))消去BC,得AB=2DE。
  VI 过A分别作BC与EF的平行线,交CD于G、H。则由角D与角C互余可知,DAG是直角三角形。此时ABCG与AEFH均为平行四边形,故GC=AB,HF=AE,AH=EF。则DH=DF-HF=DF-AE=1/2(DC-AB),DG=DC-GC=DC-AB。于是AH是直角三角形DAG的中线,从而EF=AH=1/2(DG)=1/2(DC-AB)。
  VII 利用III的结果,延长NM交CA于F,交BA于G。则角AFG=角DGM。但是角DGM=角FGA。于是角BAC=角FGA+角AFG=2 角AFG。从而角HAC=角AFN=1/2(角BAC),于是AH平行于FN,即MN平行于AH。
  VIII 本题的叙述有误,应为“AE⊥BM,AF⊥CN”。延长AE,AF分别交BC于G、H。则GBA与HCA均为等腰三角形,BE与CF分别为顶角的角平分线,从而也为底边的中线。这时EF为三角形AGH的中位线,从而EF平行于GH,也即BC。
  IX 设BD交CE于O。显然角OBC=角OCB,于是CO是直角三角形BCM的斜边中线,即BO=OM。此时由于MF平行于CE,可知OE为三角形BMF的中位线,于是BE=EF。
  X 以数字标记的角的位置?
  楼主关于III的解法很漂亮!至于IX,注意到角BCM是直角,于是从“角OBC=角OCB”可以推出角OCM=角OMC,这样OCB和OCM都是等腰三角形,就有BO=OM了。
以上问题属网友观点,不代表本站立场,仅供参考!