已知,且u=x2+y2-4x-4y+8,则u的最小值为A.B.C.D.
网友回答
B
解析分析:求解目标u=x2+y2-4x-4y+8=(x-2)2+(y-2)2,其几何意义是坐标平面内的点P(x,y)到点(2,2)的距离的平方,而点P在平面区域内,画出区域,分析图形之间的关系即可.
解答:解:不等式组所表示的平面区域是如图中的△ABC,根据题意只能是点(2,2)到直线x+y-1=0的距离最小,这个最小值是,故所求的最小值是.故选B.
点评:本题考查二元一次不等式组所表示的平面区域、而二元函数的几何意义和数形结合思想.这类问题解题的关键是在数形结合思想指导下,二元函数几何意义的运用,本题中点(2,2)能保证是在图中的圆与直线x+y-1=0的切点处是问题的最优解,但如果目标函数是u=x2+y2-4y+4,则此时的最优解就不是直线与圆的切点,而是区域的定点C.