已知f(x)是奇函数,且对定义域内任意自变量x满足f(1-x)=f(1+x),当x∈(0,1]时,f(x)=ex,则当x∈[-1,0)时,f(x)=________,当x∈(4k,4k+1],k∈N*时,f(x)=________.
网友回答
-e-x ex-4k
解析分析:先利用函数为奇函数求得,当x∈[-1,0)时f(x)=-f(-x),把f(x)=ex,代入求得x∈[-1,0)时,f(x)的解析式;进而利用f(1-x)=f(1+x)求得f(x)=f(x+4)判断出函数是以4为周期的函数,进而可知当x∈(4k,4k+1]时,x-4k∈(0,1],代入函数x∈(0,1]时f(x)的解析式,