△ABC的AB边在平面α内,C在平面α外,AC和BC分别与面α成30°和45°的角,且面ABC与α成60°的二面角,那么sin∠ACB的值为A.1B.C.D.1或
网友回答
D
解析分析:从C向平面作垂线CD,连接AD,BD,作CE⊥AB,连接DE,根据三垂线定理,DE⊥AB,设CD=h,∠CBD=45°,BC=h,∠CAD=30°,AC=2CD=2h,∠CED是二面角的平面角,∠CED=60°,CE=,由勾股定理求出sinC=1;另一种是∠B是钝角,CE在三角形ABC之外,AB=AE-BE=,由余弦定理,求出sinC.
解答:从C向平面作垂线CD,连接AD,BD,作CE⊥AB,连接DE,根据三垂线定理,DE⊥AB,设CD=h,∠CBD=45°,BC=h,∠CAD=30°,AC=2CD=2h,∠CED是二面角的平面角,∠CED=60°,CE=,根据勾股定理,AE=,BE=,AB=AE+BE=h,根据勾股定理逆定理,AB2=BC2+AC2,(h)2=(h)2+(2h)2,∠C=90°,sinC=1,另一种是∠B是钝角,CE在三角形ABC之外,AB=AE-BE=,根据余弦定理,AB2=AC2+BC2-2AC×BC×cosC,(h)2=(2h)2+(h)2-2×2h×hcosC,cosC=,sinC==,故角ACB的正弦值是1或.故选D.
点评:本题考查与二面角有关的立体几何的综合问题,解题时要认真审题,仔细解答,注意勾股定理和余弦定理的灵活运用.