若函数f(x)满足:“对于区间(1,2)上的任意实数x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”,则称f(x)为优美函数.在下列四个函

发布时间:2020-08-01 02:36:42

若函数f(x)满足:“对于区间(1,2)上的任意实数x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”,则称f(x)为优美函数.在下列四个函数中,优美函数是A.f(x)=|x|B.C.f(x)=2xD.f(x)=x2

网友回答

B
解析分析:首先分析题目的新定义满足:“对于区间(1,2)上的任意实数x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”,则称f(x)为优美函数,要求选择优美曲线.故需要对4个选项代入不等式|f(x2)-f(x1)|<|x2-x1|分别验证是否成立即可得到
以上问题属网友观点,不代表本站立场,仅供参考!