已知数列满足a1=1,an+1=2an+1(n∈N*)(1)求证:数列{an+1}是等比数列;(2)求{an}的通项公式.

发布时间:2020-07-31 16:22:32

已知数列满足a1=1,an+1=2an+1(n∈N*)
(1)求证:数列{an+1}是等比数列;
(2)求{an}的通项公式.

网友回答

解:(1)由an+1=2an+1得an+1+1=2(an+1),
又an+1≠0,
∴=2,
即{an+1}为等比数列;
(2)由(1)知an+1=(a1+1)qn-1,
即an=(a1+1)qn-1-1=2?2n-1-1=2n-1.

解析分析:(1)给等式an+1=2an+1两边都加上1,右边提取2后,变形得到等于2,所以数列{an+1}是等比数列,得证;(2)设数列{an+1}的公比为2,根据首项为a1+1等于2,写出数列{an+1}的通项公式,变形后即可得到{an}的通项公式.

点评:此题考查学生掌握等比数列的性质并会确定一个数列为等比数列,灵活运用等比数列的通项公式化简求值,是一道综合题.
以上问题属网友观点,不代表本站立场,仅供参考!