如图为△ABC的内切圆,点D,E分别为边AB,AC上的点,且DE为⊙I的切线,若△ABC的周长为21,BC边的长为6,则△ADE的周长为A.15B.9C.7.5D.7
网友回答
B
解析分析:根据三角形内切圆的性质及切线长定理可得DM=DP,BN=BM,CN=CQ,EQ=EP,则BM+CQ=6,所以△ADE的周长=AD+DE+AE=AD+AE+DM+EQ,代入求出即可.
解答:∵△ABC的周长为21,BC=6,∴AC+AB=21-6=15,设⊙I与△ABC的三边AB、BC、AC的切点为M、N、Q,切DE为P,∵DM=DP,BN=BM,CN=CQ,EQ=EP,∴BM+CQ=BN+CN=BC=6,∴△ADE的周长=AD+DE+AE=AD+AE+DP+PE=AD+DM+AE+EQ=AB-BM+AC-CQ=AC+AB-(BM+CQ)=15-6=9,故选B.
点评:此题充分利用圆的切线的性质,及圆切线长定理.