以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值是________.
网友回答
解析分析:证△COA≌△DOB,推出等腰直角三角形AOB,求出AB=OA,得出要使AB最小,只要OA取最小值即可,当OA⊥CD时,OA最小,求出OA的值即可.
解答:∵四边形CDEF是正方形,∴∠OCD=∠ODB=45°,∠COD=90°,OC=OD,∵AO⊥OB,∴∠AOB=90°,∴∠COA+∠AOD=90°,∠AOD+∠DOB=90°,∴∠COA=∠DOB,∵在△COA和△DOB中,∴△COA≌△DOB,∴OA=OB,∵∠AOB=90°,∴△AOB是等腰直角三角形,由勾股定理得:AB==OA,要使AB最小,只要OA取最小值即可,根据垂线段最短,OA⊥CD时,OA最小,∵正方形CDEF,∴FC⊥CD,OD=OF,∴CA=DA,∴OA=CF=1,即AB=,故