如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM相等的角(不含它本身)的个数为A.5B.6C.7D.8

发布时间:2020-07-30 05:54:32

如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM相等的角(不含它本身)的个数为A.5B.6C.7D.8

网友回答

C
解析分析:由FM平分∠EFD可知:与∠DFM相等的角有∠EFM;由于AB∥CD,EG、EM、FM分别平分∠AEF、∠BEF、∠EFD,根据平行线的性质和判定定理可以推导出FM∥EG,由此可以写出与∠DFM相等的角.

解答:∵FM平分∠EFD,∴∠EFM=∠DFM=∠CFE,∵EG平分∠AEF,∴∠AEG=∠GEF=∠AEF,∵EM平分∠BEF,∴∠BEM=∠FEM=∠BEF,∴∠GEF+∠FEM=(∠AEF+∠BEF)=90°,即∠GEM=90°,∠FEM+∠EFM=(∠BEF+∠CFE),∵AB∥CD,∴∠EGF=∠AEG,∠CFE=∠AEF∴∠FEM+∠EFM=(∠BEF+∠CFE)=(BEF+∠AEF)=90°,∴在△EMF中,∠EMF=90°,∴∠GEM=∠EMF,∴EG∥FM,∴与∠DFM相等的角有:∠EFM、∠GEF、∠EGF、∠AEG以及∠GEF、∠EGF、∠AEG三个角的对顶角.故选C.

点评:重点考查了角平分线的定义,平行线的性质和判定定理,推导较复杂.
以上问题属网友观点,不代表本站立场,仅供参考!