抛物线y=-x2+2(m+1)x+m+3与x轴交于A、B两点(如图),且OA:OB=3:1,则m等于A.-B.0C.-或0D.1

发布时间:2020-07-30 14:02:10

抛物线y=-x2+2(m+1)x+m+3与x轴交于A、B两点(如图),且OA:OB=3:1,则m等于A.-B.0C.-或0D.1

网友回答

B

解析分析:运用二次函数与x轴有交点的性质.

解答:设B坐标为(a,0),那么A(-3a,0),与x轴有交点,此时y=0.那么抛物线变为-x2+2(m+1)x+m+3=0.∴a+(-3a)=2m+2,a(-3a)=-m-3,解得a=-1,m=0;a=,m=-.∵对称轴在y轴右侧,所以->0,解得m>-1,∴m=0.故选B.

点评:二次函数与x轴有交点,那么就可变为一元二次方程求解,注意利用抛物线的对称轴舍去不合题意的值.
以上问题属网友观点,不代表本站立场,仅供参考!