如图,四边形ABCD为正方形,△BEF为等腰直角三角形(∠BFE=90°,点B、E、F按逆时针排列),点P为DE的中点,连PC,PF
(1)如图①,点E在BC上,则线段PC、PF的数量关系为______,位置关系为______(不证明).
(2)如图②,将△BEF绕点B顺时针旋转a(O<a<45°),则线段PC,PF有何数量关系和位置关系?请写出你的结论,并证明.
(3)如图③,△AEF为等腰直角三角形,且∠AEF=90°,△AEF绕点A逆时针旋转过程中,能使点F落在BC上,且AB平分EF,直接写出AE的值是______.
网友回答
解:(1)∵∠BFE=90°,点P为DE的中点
∴PF=PD=PE,
同理可得PC=PD=PE,
∴PC=PF,
又∵∠FPE=2∠FDP,∠CPE=2∠PDC,
∴∠FPC=2∠FDC=90°,
所以PC=PF,PC⊥PF.
(2)PC⊥PF,PF=PC.理由如下:
延长FP至G使PG=PF,连DG,GC,FC,延长EF交BD于N,如图,
∵点P为DE的中点,
∴△PDG≌△PEF,
∴DG=EF=BF.
∴∠PEF=∠PDG,
∴EN∥DG,
∴∠BNE=∠BDG=45°+∠CDG=90°-∠NBF=90°-(45°-∠FBC)
∴∠FBC=∠GDC,
∴△BFC≌△DGC,
∴FC=CG,∠BCF=∠DCG.
∴∠FCG=∠BCD=90°.
∴△FCG为等腰直角三角形,
∵PF=PG,
∴PC⊥PF,PF=PC.
(3)设AE=2x,则PE=PF=x,AP=x,PB=AB-x,
∵Rt△AEP∽Rt△FBP,
∴=,
∴x=AB.
∴AE=2x=AB.
故