如图,在△ABC中,AB=BC=5,AC=7,△ABC的内切圆⊙O与边AC相切于点M,过点M作平行于边BC的直线MN交⊙O于点N,过点N作⊙O的切线交AC于点P.则M

发布时间:2020-08-10 19:02:48

如图,在△ABC中,AB=BC=5,AC=7,△ABC的内切圆⊙O与边AC相切于点M,过点M作平行于边BC的直线MN交⊙O于点N,过点N作⊙O的切线交AC于点P.则MN-NP=________.

网友回答

0.6
解析分析:首先根据等腰三角形的性质得出AM=MC,以及利用平行线的性质得出GM=2.5,再利用切割线定理求出MN的长,再利用△ABC∽MPN,得出=,即可得求出PM的长,进而得出MN-NP的值.

解答:解:∵AB=BC=5,AC=7,△ABC的内切圆⊙O与边AC相切于点M(利用等腰三角形三线合一,),
∴AM=CM=3.5,
设MN交AB于点G,
∵MG∥BC,
∴∠C=∠NMP,GM=BC=2.5,
∴AG=BG=2.5,
设⊙O与边AB相切于点R,
∵则AR=AM=3.5,
∴GR=3.5-2.5=1,
∵GR 2=GN×GM,
∴1=GN×2.5,
解得:GN=0.4,
∴MN=GM-GN=2.5-0.4=2.1,
∵∠C=∠NMP,PN=PM(切线长定理),
∴∠PNM=∠PMN=∠C=∠A,
∴△ABC∽MPN,
∴=,
即=,
解得:PM=1.5,
∴PN=1.5,则
∴MN-NP=2.1-1.5=0.6.
以上问题属网友观点,不代表本站立场,仅供参考!