如图,△ABC内接于⊙O,OC和AB相交于点E,点D在OC的延长线上,且∠B=∠D=∠BAC=30°.
(1)试判断直线AD与⊙O的位置关系,并说明理由;
(2)AB=6,求⊙O的半径.
网友回答
解:(1)直线AD与⊙O相切.理由如下:
如图,连接OA.
∵∠B=30°,
∴∠AOC=2∠B=60°,
∴∠OAD=180°-∠AOD-∠D=90°,
即OA⊥AD,
∵OA为半径,
∴AD是⊙O的切线.
(2)∵OA=OC,∠AOC=60°,
∴△ACO是等边三角形,
∴∠ACO=60°,AC=OA,
∴∠AEC=180°-∠EAC-∠ACE=90°,
∴OC⊥AB,
又∵OC是⊙O的半径,
∴AE=AB=6=3,
在Rt△ACE中,sin∠ACE==sin?60°,
∴AC=6,
∴⊙O的半径为6.
解析分析:(1)连接OA,求出∠AOC=2∠B=60°,根据三角形内角和定理求出∠OAD,根据切线判定推出即可;
(2)求出∠AEC=90°,根据垂径定理求出AE,根据锐角三角函数的定义即可求出AC,根据等边三角形的性质推出即可.
点评:本题考查了切线的判定,含30度角的直角三角形,锐角三角函数的定义,等边三角形的性质和判定的应用,主要考查了学生综合运用性质进行推理的能力.