如果一个三角形的周长为10,那么连接各边中点所成的三角形的周长为A.4B.5C.6D.12
网友回答
B
解析分析:根据中位线定理,易证中点三角形的周长是原三角形周长的一半,原三角形的周长为10,所以中点三角形的周长为5.
解答:解:连接△ABC边AC、CB、BA的中点,可得△ABC的三条中位线DF、EF、ED,根据中位线定理,∴ED=BC,DF=AB,EF=AC,∴ED+DF+FE=(BC+AB+AC)=×10=5.故选B.
点评:此题考查了三角形的中位线定理:三角形的中位线平行于第三边并等于第三边的一半.