解答题已知tanα=3,求下列各式的值:
(1);
(2).
网友回答
解:(1)∵原式=
∴分子分母都除以cosα,得
原式==
(2)∵原式=
∴将分子化成1=sin2α+cos2α,可得原式=
再将分子分母都除以cos2α,得
原式==解析分析:(1)将分式的分子和分母都除以cosα,结合同角三角函数的商数关系可得关于tanα的式子,再将tanα=3代入即可;(2)首先利用“1的代换”将分子化成sin2α+cos2α,然后将分式的分子和分母都除以cos2α,结合同角三角函数的商数关系将原式化简成为关于tanα的式子,最后将tanα=3代入即可求出原式的值.点评:本题给出角α的正切,求关于sinα、cosα的分式的值,着重考查了同角三角函数的基本关系的知识,属于基础题,解题时应该注意“弦化切”数学思想的运用.