两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为A.B.C.sinαD.1
网友回答
A
解析分析:首先过A作AE⊥BC,AF⊥CD于F,垂足为E,F,证明△ABE≌△ADF,从而证明四边形ABCD是菱形,再利用三角函数算出BC的长,最后根据菱形的面积公式算出重叠部分的面积即可.
解答:解:如右图所示:过A作AE⊥BC,AF⊥CD于F,垂足为E,F,∴∠AEB=∠AFD=90°,∵AD∥CB,AB∥CD,∴四边形ABCD是平行四边形,∵纸条宽度都为1,∴AE=AF=1,在△ABE和△ADF中,∴△ABE≌△ADF(AAS),∴AB=AD,∴四边形ABCD是菱形.∴BC=AB,∵=sinα,∴BC=AB=,∴重叠部分(图中阴影部分)的面积为:BC×AE=1×=,故选:A.
点评:此题主要考查了菱形的判定与性质,以及三角函数的应用,关键是证明四边形ABCD是菱形,利用三角函数求出BC的长.