如图,已知在?ABCD中,E,F分别是AB,CD的中点,BD是对角线,AG∥DB交CB延长线于G.若四边形BEDF是菱形,则四边形AGBD是A.平行四边形B.矩形C.菱形D.正方形
网友回答
B
解析分析:先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.
解答:解:当四边形BEDF是菱形时,四边形AGBD是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥BC.∵AG∥BD,∴四边形AGBD是平行四边形.∵四边形BEDF是菱形,∴DE=BE.∵AE=BE,∴AE=BE=DE.∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.∴∠2+∠3=90°.即∠ADB=90°.∴四边形AGBD是矩形.故选:B.
点评:主要考查了平行四边形、菱形的性质和矩形的判定.解题的关键是熟练掌握平行四边形、菱形性质以及矩形的判定定理.