如图,AB是⊙O的直径,AC是弦,∠ACD=∠AOC,AD⊥CD于点D.
(1)求证:CD是⊙O的切线;
(2)若AB=10,AD=2,求AC的长.
网友回答
解:(1)∵OA=OC,
∴∠OCA=∠OAC,
∵∠AOC+∠OCA+∠OAC=180°,
∴∠AOC+2∠OCA=180°,
∴∠AOC+∠OCA=90°,
∵∠ACD=∠AOC,
∴∠ACD+∠OCA=90°,即∠DCO=90°,
又∵OC是半径,
∴CD是⊙O的切线;
(2)过点A作AE⊥OC,垂足为E,可得∠AEC=90°,
由(1)得∠DCO=90°,
∵AD⊥CD,
∴∠D=90°,
∴四边形DCEA是矩形,又AD=2,
∴CE=AD=2,…
∵AB是直径,且AB=10,
∴OA=OC=5,
∴OE=OC-CE=5-2=3,
∴在Rt△AEO中,OA=5,OE=3,
根据勾股定理得:AE==4,
∴在Rt△ACE中,CE=2,AE=4,
根据勾股定理得:AC==2.
解析分析:(1)由半径OA=OC,根据等边对等角得到∠OCA=∠OAC,又根据三角形的内角和定理得到三角形AOC三个内角和等于180°,等量代换得∠AOC+2∠OCA=180°,在等式两边同时2,把∠ACD=∠AOC代入得到∠ACD与∠OCA相加为90°,可得∠DCO为90°,又OC为半径,根据切线的性质可得CD为圆O的切线;
(2)过A作AE垂直于OC,交OC于点E,再由(1)得到DC与CO垂直,且AD垂直于CD,根据垂直定义得到四边形ADCE三个角为直角,可得此四边形为矩形,根据矩形的对边相等可得AD=CE,由AD的长得到CE的长,再由直径AB的长求出半径OA的长,在直角三角形AOE中,由OA及OE的长,利用勾股定理求出AE的长,由AE及CE的长,利用勾股定理即可求出AC的长.
点评:此题考查了等腰三角形的判定与性质,矩形的判定与性质,勾股定理,以及切线的判定与性质,利用了转化的思想,证明切线的方法有两种:有点连接圆心与此点,证明垂直;无点作垂线,证明垂线段长等于圆的半径.