已知:Rt△ABC中,∠C=90°,BC=6厘米,AC=8厘米,以C为圆心,5厘米长为半径的⊙C与边AB的位置关系是A.相切B.相离C.相交D.以上都不对
网友回答
C
解析分析:此题首先应求得圆心到直线的距离,根据直角三角形的面积公式即可求得;再进一步根据这些和圆的位置关系与数量之间的联系进行判断.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.
解答:∵BC=6厘米,AC=8厘米,∴AB==10,S△ABC=AC×BC=×6×8=24,∴AB上的高为:24×2÷10=4.8,即圆心到直线的距离是4.8.∵4.8<5,∴直线和圆相交.故选C.
点评:此题主要考查了直线与圆的位置关系,关键是根据三角形的面积求出斜边上的高的长度.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.