已知如图:△ABC中,AB=AC,BE=CD,BD=CF,则∠EDF=A.2∠AB.90°-2∠AC.90°-∠AD.
网友回答
D
解析分析:由题中条件可得△BDE≌△CFD,即∠BDE=∠CFD,∠EDF可由180°与∠BDE、∠CDF的差表示,进而求解即可.
解答:∵AB=AC,∴∠B=∠C,∵BD=CF,BE=CD∴△BDE≌△CFD,∴∠BDE=∠CFD,∠EDF=180°-(∠BDE+∠CDF)=180°-(∠CFD+∠CDF)=180°-(180°-∠C)=∠C,∵∠A+∠B+∠C=180°.∴∠A+2∠EDF=180°,∴∠EDF=.故选D.
点评:本题主要考查了等腰三角形的性质,三角形的内角和定理及全等三角形的判定及性质问题,能够熟练掌握.