如图①,点A、B、C在⊙O上,连接OC、OB.
(1)求证:∠A=∠B+∠C.
(2)若点A在如图②所示的位置,以上结论仍成立吗?说明理由.
网友回答
(1)证明:连接OA,
∵OA=OB,OA=OC,
∴∠BAO=∠B,∠CAO=∠C,
∴∠BAC=∠BAO+∠CAO=∠B+∠C;
(2)成立.
理由:连接OA,
∵OA=OB,OA=OC,
∴∠BAO=∠B,∠CAO=∠C,
∴∠BAC=∠BAO+∠CAO=∠B+∠C.
解析分析:(1)连接OA,由OA=OB,OA=OC,利用等边对等角即可.
(2)同(1),连接OA,由OA=OB,OA=OC,利用等边对等角即可证得结论成立.
点评:此题考查了圆周角的性质、等腰三角形的性质.此题比较简单,解题的关键是注意掌握数形结合思想的应用,注意准确作出辅助线.