已知奇函数y=f(x)在(0,+∞)上为增函数,且f(3)=0,则不等式的解集为A.(-3,0)∪(0,3)B.(-∞,-3)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(3,+∞)
网友回答
A
解析分析:由奇函数y=f(x)在(0,+∞)上为增函数,且f(3)=0,知当f(x)>0时,-3<x<0,或x>3;当f(x)<0时,x<-3,或0<x<3.由此能求出不等式的解集.
解答:∵奇函数y=f(x)在(0,+∞)上为增函数,且f(3)=0,
∴当f(x)>0时,-3<x<0,或x>3;
当f(x)<0时,x<-3,或0<x<3.
∵=,
∴x与f(x)异号,
∴不等式的解集为(-3,0)∪(0,3).
故选A.
点评:本题考查不等式的解集的求法,解题的关键是由题设条件推导出当f(x)>0时,-3<x<0,或x>3;当f(x)<0时,x<-3,或0<x<3.