已知反比例函数y=和一次函数y=-2x-1,其中依次函数的图象经过(a,b),(a+1,b+m)两点.(1)求反比例函数的解析式;(2)如图所示,已知点A在第二象限,

发布时间:2020-08-09 06:32:07

已知反比例函数y=和一次函数y=-2x-1,其中依次函数的图象经过(a,b),(a+1,b+m)两点.
(1)求反比例函数的解析式;
(2)如图所示,已知点A在第二象限,且同时在上述两个函数的图象上,求点A的坐标;
(3)利用(2)的结果,试判断在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.

网友回答

解:(1)依题意可知:,
解得:m=-2.
∴反比例函数解析式为:y=-.

(2)由,
得,,
∵A点在第二象限,
∴点A的坐标为(-1,1).

(3)如图所示:

OA=,OA与x轴所夹锐角为45°.
①OA为腰时,
若OA=OP,则可得P1(,0),P2(-,0);
若OA=AP,得P3(-2,0);
②OA为底时,P4(-1,0).
故这样的点存在,共有四个,分别是P1(,0),P2(-,0),P3(-2,0),P4(-1,0).
解析分析:(1)将(a,b),(a+1,b+m)代入一次函数解析式,可得出m的值,继而得出反比例函数解析式;
(2)联立两解析式,可求出交点坐标,再由A在第二象限,可得点A的坐标;
(3)分两种情况讨论,①OA为腰,②OA为底,分别求出点P的坐标即可.

点评:本题考查了反比例函数的综合,解答本题的关键是掌握整体代入思想、数形结合思想的综合运用,难点在最后一问,注意分类讨论,不要漏解.
以上问题属网友观点,不代表本站立场,仅供参考!