解答题用数学归纳法证明:12-22+32-42+…+(-1)n-1n2=(-1)n-1.
网友回答
证明:(1)当n=1时,左边=1,右边=(-1)0=1,
故:左边=右边,
∴当n=1时,等式成立;(3分)
(2)假设n=k时,等式成立,即?12-22+32-42+…+(-1)k-1?k2=(-1)k-1?.(6分)
那么12-22+32-42+…+(-1)k-1?k2+(-1)k?(k+1)2
=(-1)k-1?+(-1)k?(k+1)2
=(-1)k(-k+2k+2)
=(-1)(k+1)-1
即当n=k+1时,等式也成立.?(10分)
根据(1)和(2)可知等式对任何n∈N+都成立.?(12分)解析分析:用数学归纳法证明问题的步骤是:第一步,验证当n=n0时命题成立,第二步假设当n=k时命题成立,那么再证明当n=k+1时命题也成立.关键是第二步中要充分用上归纳假设的结论.点评:本题考查数学归纳法的思想,应用中要注意的是用上归纳假设的结论,否则会导致错误.属于中档题.